Ag obrachadh a-mach ce脿rn ann an triantan ceart-che脿rnach
Eisimpleir
Lorg \(x^\circ\) gu aon ionad deicheach.
Freagairt
Ainmich na taobhan an toiseach.
Bhon a tha fios againn air na h-脿ireamhan air an taobh mu choinneamh agus air a' hypotenuse, feumaidh sinn coimhead airson a' cho-mheas a tha a' cleachdadh an d脿 thaoibh sin (SMH CDH TMD). Sin an co-mheas sine.
\(\sin (x^\circ ) = \frac{{\text{mu choinneamh}}}{{\text{hypotenuse}}}\)
Thoir an aire gun cuir thu na h-脿ireamhan dhan 脿ite cheart!
\(\sin (x^\circ ) = \frac{8}{{10}}\)
\(\sin (x^\circ ) = 0.8\)
Ath-r猫itich le 'atharraich taobh, atharraich obrachadh'. Nuair a ghluaiseas tu an 'sin' chun an taoibh eile dhen t-samhla 'co-ionann ri', bidh thu a' dol an rathad eile agus 's e sin sin-1 (sin inbhearsach).
\(x^\circ= sin ^{-1 (0.8)}\)
Air an 脿ireamhair, taidhp 'shift' agus an uair sin 'sin' gus sin-1 fhaighinn
\(x^\circ = 53.130...\)
Tha am freagairt an uair sin air a chruinneachadh gu 脿ireamh fhreagarrach de mhionaideachd.
\(x^\circ = 53.1^\circ\) (aon ionad deicheach).
Feuch an t-eisimpleir seo.
Question
Lorg \(x^\circ\).
Thoir do fhreagairt ceart gu aon ionad deicheach.
Tha fios againn air an taobh dhl霉th agus air a' hypotenuse.
\(\cos (x^\circ ) = \frac{{\text{dl霉th}}}{{\text{hypotenuse}}}\)
Ag ionadachadh nan luachan.
\(\cos (x^\circ ) = \frac{{20}}{{26}}\)
\(\cos(x^\circ ) = cos^{-1}(0.769)\)
\(\cos (x^\circ ) = cos ^{-1}(0.769)\)
\(x^\circ = 39.7^\circ (gu\,1\,id.)\)