An caisead
Bidh an caiseadAir graf, 's e an caisead claonadh na loidhne. Mar as motha an caisead, 's ann as motha a tha reat an atharrachaidh. ag innse dhuinn d猫 cho cas 's a tha loidhne. Mar sin, mar as motha an caisead, 's ann as caise a tha an loidhne.
'S e loidhne dh矛reach a tha ag aomadh suas chun na l脿imh dheis a th' ann an caisead dearbhte.
'S e loidhne dh矛reach a tha ag aomadh 蝉矛辞蝉 chun na l脿imh dheis a th' ann an caisead 脿icheil.
Caiseadan loidhneachan s貌nraichte
Tha an aon chaisead aig loidhneachan co-sh矛nte.
Tha caisead 苍别辞-尘丑矛苍颈肠丑迟别 aig loidhneachan bheartagail.
Co-aontar \(x = a\)
Tha caisead de neoni aig loidhneachan c貌mhnard.
Co-aontar \(y = b\)
Seo aon dhe na foirmlean a bhios sinn a' cleachdadh gus caisead loidhne dh矛reach obrachadh a-mach:
\(\text{Caisead leathaid} = \frac{{\text{astar bheartagail}}}{{\text{astar c貌mhnard}}}\)
Feuch a-nis na ceistean seo.
Question
Tha ramp 霉r gu bhith a' dol air cliathaich togalaich.
Obraich a-mach caisead an ramp bhon diagram.
Tha an caisead dearbhte bhon a tha an loidhne ag aomadh suas an taobh deas.
\(\text{Caisead} = \frac{{\text{astar bheartagail}}}{{\text{astar c貌mhnard}}}\)
\(= \frac{{26}}{{78}}\)
\(=\frac{13}{39}\)
\(=\frac{1}{3}\)
\(= 26 \div 78\)
\(= 0.333...\)
\(= 0.3\,(gu\,1\,id.)\)
Question
Obraich a-mach caisead na loidhne gu h-矛osal.
Tha an caisead 脿icheil bhon a tha an loidhne ag aomadh 蝉矛辞蝉 an taobh deas.
\(\text{Caisead} = \frac{{\text{astar bheartagail}}}{{\text{astar c貌mhnard}}}\)
\(-\frac{5}{2}\)
Question
Obraich a-mach caisead na loidhne gu h-矛osal.
Tha an caisead 脿icheil bhon a tha an loidhne ag aomadh 蝉矛辞蝉 an taobh deas.
\(\text{Caisead} = \frac{{\text{astar bheartagail}}}{{\text{astar c貌mhnard}}}\)
\(= \frac{{ - 5}}{{17}}\)
\(= - 5 \div 17\)
\(= - 0.29\,(gu\,2\,id.)\)
Question
Obraich a-mach caisead na loidhne gu h-矛osal.
Tha an caisead dearbhte bhon a tha an loidhne ag aomadh suas an taobh deas.
\(\text{Caisead} = \frac{{\text{astar bheartagail}}}{{\text{astar c貌mhnard}}}\)
\(= \frac{{10}}{{45}}\)
\(= \frac{2}{9}\)