成人快手

Faid arc agus farsaingeachd seactor

Farsaingeachd seactor

'S e farsaingeachd cearcaill = \(\pi {r^2}\).

'S e am foirmle airson farsaingeachd seactor cearcaill obrachadh a-mach:

\(Farsaingeachd\,seactor = \frac{{\text{Ce脿rn}}}{{360^\circ }} \times \pi {r^2}\)

Eisimpleir

Ceist

Obraich a-mach farsaingeachd an t-seactor san diagram.

Arc with 3cm radius and 144 degree angle

Farsaingeachd seactor:

\(= \frac{{\text{Ce脿rn}}}{{360^\circ }} \times \pi {r^2}\)

\(= \frac{{144}}{{360}} \times \pi \times {3^2}\)

\(= 11.309...\)

\(= 11.31\,cm^{2}\)

Question

Obraich a-mach faid gach arc agus farsaingeachd gach seactor gu 3 ionadan deicheach.

Diagram of three arcs with angles and radius marked 72鈭 & 5cm, 45鈭 & 4cm and 150鈭 & 12cm

Related links