Farsaingeachd parailealogram is iteileag
Farsaingeachd parailealogram
Faodaidh sinn na ceithir-che脿rnaich a leanas a sgaradh nan ceart-che脿rnaich agus nan triantain gus an fharsaingeachd aca obrachadh a-mach.
D貌igh 1
Farsaingeachd triantain (1) \(A = \frac{1}{2}bh\)
\(= \frac{1}{2} \times 4 \times 5\)
\(= \frac{1}{2} \times 20\)
\(= 10\,c{m^2}\)
Farsaingeachd ceart-chearnaich (2) \(A = l \times b\)
\(= 6 \times 5\)
\(= 30c{m^2}\)
Farsaingeachd triantain (3) = co-ionann ri farsaingeachd triantain (1)
\(= 10\,c{m^2}\)
\(Farsaingeachd\ iomlan\ = 10 + 30 + 10 = 50\,c{m^2}\)
D貌igh 2
D猫an d脿 thriantan co-ch貌rdach dhen pharailealogram thar aon dhe na trastain.
\(Farsaingeachd\,triantain\,A = \frac{1}{2}bh\)
\(= \frac{1}{2} \times 10 \times 5\)
\(= 25{cm^2}\)
\(Farsaingeachd\,parailealogram = 2 \times 25 = 50 {cm^2}\)
Farsaingeachd iteileig
Bhon a tha loidhne-cothromachaidh bheartagail aig iteileagTha d脿 phaidhir de che脿rnan dl霉th le faid cho-ionann aig iteileig, coltach ri d脿 thriantan co-chasach air an cur c貌mhla. bidh an aon fharsaingeachd aig triantan 1 agus 2. Bidh an aon rud f矛or mu thriantain 3 agus 4.
Frasaingeachd triantain 1 \(A = \frac{1}{2}bh\)
\(= \frac{1}{2} \times 6 \times 10\)
\(= \frac{1}{2} \times 60\)
\(= 30\,c{m^2}\)
Frasaingeachd triantain 2 \(= 30\,c{m^2}\)
Frasaingeachd triantain 3 \(A = \frac{1}{2}bh\)
\(= \frac{1}{2} \times 6 \times 18\)
\(= \frac{1}{2} \times 108\)
\(= 54c{m^2}\)
Frasaingeachd triantain 4 \(= 54\,c{m^2}\)
\(Fargaingeachd\,iomlan = 30 + 30 + 54 + 54 = 168\,c{m^2}\)