成人快手

Trigonometry - OCRTrigonometric graphs - Higher

The three trigonometric ratios; sine, cosine and tangent are used to calculate angles and lengths in right-angled triangles. The sine and cosine rules calculate lengths and angles in any triangle.

Part of MathsGeometry and measure

Trigonometric graphs - Higher

Circle with triangle from centre to edge, at angle theta

This circle has the centre at the origin and a radius of 1 unit.

The point P can move around the circumference of the circle. At point P the \(x\)-coordinate is \(\cos{\theta}\) and the \(y\)-coordinate is \(\sin{\theta}\) where \({\theta}\) is measured anti-clockwise from the positive \(x\)-axis.

As the point P moves anticlockwise round the circle from (1, 0), the angle \(\theta\) increases until P returns to its starting position at (1, 0) when \(\theta\) = 360掳. If P continues moving past (1, 0), \(\theta\) becomes greater than 360掳, and the next time P is at (1, 0), \(\theta\) will be 720掳. And so on. Instead of P moving anticlockwise from (1, 0), if it goes clockwise then \(\theta\) will be negative!

No matter where P is on the circle, the \(x\)-coordinate gives the value of \(\cos{\theta}\) and the \(y\)-coordinate gives the value of \(\sin{\theta}\). Thus, the values of \(\cos{\theta}\) and \(\sin{\theta}\) will sometimes be positive and sometimes negative depending on the value of \(\theta\).

The graphs of \(y = \sin{\theta}\) and \(y = \cos{\theta}\) can be plotted.

The graph of y = sin 胃

Graph of y = sin theta

The graph of \(y = \sin{\theta}\) has a maximum value of 1 and a minimum value of -1.

The graph has a period of 360掳. This means that it repeats itself every 360掳.

The graph of y = cos 胃

Graph of y = cos theta

The graph of \(y = \cos{\theta}\) has a maximum value of 1 and a minimum value of -1.

The graph has a period of 360掳.

The graph of y = tan 胃

This is defined as \(\tan{\theta} = \frac{o}{a}\) and from the circle \(o = \sin{\theta}\) and \(a = \cos{\theta}\).

\(\tan{\theta} = \frac{\sin{\theta}}{\cos{\theta}}\)

As the point P moves anticlockwise round the circle, the values of \(\cos{\theta}\) and \(\sin{\theta}\) change, therefore the value of \(\tan{\theta}\) will change.

Y = tan theta

The graph has a period of 180掳.

Calculating angles from trigonometric graphs

The symmetrical and periodic properties of the trigonometric graphs will give an number of solutions to any trigonometric equation.

Example

Solve the equation \(\sin{x} = 0.5\) for all values of \(x\) between \(-360^\circ \leq x \leq 360^\circ\).

\(\sin{x} = 0.5\)

Using a calculator gives one solution:

\(x = 30^\circ\)

Draw the horizontal line \(y = 0.5\).

The line \(y = 0.5\) crosses the graph of \(y = \sin{x}\) four times in the interval \(-360^\circ \leq \theta \leq 360^\circ\) so there are four solutions.

Graph of y=sin x

There is a line of symmetry at \(x = 90^\circ\), so there is a solution at \(180 - 30 = 150^\circ\).

The period is 360掳 so to find the next solutions subtract 360掳.

The solutions to the equation \(\sin{x} = 0.5\) are:

\(x\) = -330掳, -210掳, 30掳 and 150掳.

Question

Solve the equation \(\cos{x} = 0.75\) for all values of \(x\) between \(-360^\circ \leq x \leq 360^\circ\). Give your answer to the nearest degree.

Question

Given that \(\tan{60} = \sqrt{3}\), calculate the other values of \(x\) in the interval \(0^\circ \leq x \leq 720^\circ\) for which \(\tan{x} = \sqrt{3}\).