˿

Triantain gun cheàrn ceartù

Bidh riaghailtean sine/cosine gan cleachdadh le triantain gun cheàrn ceart is thaobh/cheàrn a tha a dhìth. Bidh seo ga chleachdadh le cùrsaichean. Obraichear an fharsaingeachd a-mach le triantanachd.

Part of MatamataigSgilean triantanachd

ù

Ann am matamataig cuimhnich gur e cùrsa an ceàrn ann an ceuman air a thomhas deasail on tuath. 'S àbhaist seo a bhith na chùrsa trì-figearan. Mar eisimpleir, 's àbhaist gum bi 30° deasail on tuath air a sgrìobhadh mar 030°.

Eisimpleir

Dh'fhàg bàta cala agus shiubhail i 9 km dhan iar-thuath, agus an uair sin 12 km gu tuath. Obraich a-mach:

a) an t-astar a tha i bhon chala

b) an cùrsa a dh'fheumas i a ghabhail a-nis gus faighinn air ais gu cala

Freagairt

Feumaidh sinn an toiseach sgeidse a dhèanamh dhen cheist.

Obraich a-mach meud ceàrn R.

A path of a ship sailing 9lm NW and 12km N
Harbour image breaking down the main angle to 90 degrees and 45 degrees.

Bhon a tha am bàta a' siubhal bhon chala dhan iar-thuath, tha ceàrnan de 45° air an cruthachadh mar a chì thu san diagram air an làimh dheis. Tha an ceàrn de 135° a' tighinn bho bhith a' cur-ris 45° agus 90°.

'S e an taobh a tha dhìth an t-astar a tha am bàta bhon chala.

Tha fios againn air dà thaobh agus an ceàrn eatarra, agus mar sin cleachdaidh sinn riaghailt cosine.

\({a^2} = {b^2} + {c^2} - 2bcCosA\)

\(= {9^2} + {12^2} - (2 \times 9 \times 12 \times \cos 135^\circ )\)

= 81 + 144 – (-152.74)

= 81 + 144 + 152.74

= 377.74

\(a=\sqrt{377.74}\)

a = 19.4 km

Diagram of bearings triangle with 135° angle and values 12km and 9km

Feumaidh sinn a-nis an cùrsa ùr a lorg airson seòladh air ais gu cala.

Diagram of bearings triangle with angle to find

Bheir sinn sùil eile air an sgeidse.

Ma dh'obraicheas sinn a-mach an ceàrn \(x^{\circ}\) thèid againn an uair sin air an ceàrn a tha dhìth a lorg le bhith a' toirt-air-falbh na freagairt seo bho 180°. Tha na ceàrnan ann an loidhne dhìreach a' tighinn gu 180°, gus an seo 's e an loidhne gu tuath a th' ann.

Bhon a tha uiread de dh'fhiosrachadh againn a-nis, faodaidh sinn riaghailt sine no cosine a chleachdadh. 'S àbhaist gu bheil riaghailt sine nas luaithe.

\(\frac{{19.4}}{{\sin 135^\circ }} = \frac{9}{{\sin x^\circ }}\)

\(19.4\sin x^\circ = 9\sin 135^\circ\)

\(\sin x^\circ = \frac{{9\sin 135^\circ }}{{19.4}}\)

\(sinx^{\circ}=0.328\)

\(x^{\circ}=sin^{-1}\,0.328\)

\(x^{\circ}=19.1^{\circ}\)

Mar sin 's e an ceàrn a tha dhìth oirnn: \(180^{\circ}-19.1^{\circ}=159.9^{\circ}\).

More guides on this topic

Related links